close
close

Independent rediploidization masks shared whole genome duplication in the sturgeon-paddlefish ancestor

Independent rediploidization masks shared whole genome duplication in the sturgeon-paddlefish ancestor

  • Mandáková, T. & Lysak, M. A. Post-polyploid diploidization and diversification through dysploid changes. Curr. Opin. Plant Biol. 42, 55–65 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Blanc, G. & Wolfe, K. H. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16, 1667–1678 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soltis, P. S. & Soltis, D. E. Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant Biol. 30, 159–165 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Clark, J. W. & Donoghue, P. C. J. Whole-Genome Duplication and Plant Macroevolution. Trends Plant Sci. 23, 933–945 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wolfe, K. H. & Shields, D. C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713 (1997).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Marcet-Houben, M. & Gabaldón, T. Beyond the Whole-Genome Duplication: Phylogenetic Evidence for an Ancient Interspecies Hybridization in the Baker’s Yeast Lineage. PLOS Biol. 13, e1002220 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Du, K. et al. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nat. Ecol. Evol. 4, 841–852 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, P. et al. The American Paddlefish Genome Provides Novel Insights into Chromosomal Evolution and Bone Mineralization in Early Vertebrates. Mol. Biol. Evol. 38, 1595–1607 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Furlong, R. F. & Holland, P. W. H. Were vertebrates octoploid? Philos. Trans. R. Soc. B Biol. Sci. 357, 531–544 (2002).

    Article 
    CAS 

    Google Scholar 

  • Meyer, A. & Van de Peer, Y. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). BioEssays N. Rev. Mol. Cell. Dev. Biol. 27, 937–945 (2005).

    CAS 

    Google Scholar 

  • Nakatani, Y. et al. Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution. Nat. Commun. 12, 4489 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simakov, O. et al. Deeply conserved synteny resolves early events in vertebrate evolution. Nat. Ecol. Evol. 4, 820–830 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parey, E. et al. An atlas of fish genome evolution reveals delayed rediploidization following the teleost whole-genome duplication. Genome Res. 32, 1685–1697 (2022).

  • Hokamp, K., McLysaght, A. & Wolfe, K. H. The 2R hypothesis and the human genome sequence. in Genome Evolution (eds. Meyer, A. & Van de Peer, Y.) 95–110 (Springer Netherlands, 2003). https://doi.org/10.1007/978-94-010-0263-9_10.

  • Taylor, R. S., Daniels, R. R., Morata, D. P., Gundappa, M. K. & Macqueen, D. J. Evolution of ray-finned fish genomes: Status and directions with a primer on microRNA characterization. in Cellular and Molecular Approaches in Fish Biology 309–346 (Elsevier, 2022).

  • Xu, P. et al. The allotetraploid origin and asymmetrical genome evolution of the common carp Cyprinus carpio. Nat. Commun. 10, 4625 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Session, A. M. et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336–343 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lien, S. et al. The Atlantic salmon genome provides insights into rediploidization. Nature 533, 200–205 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van de Peer, Y., Maere, S. & Meyer, A. The evolutionary significance of ancient genome duplications. Nat. Rev. Genet. 10, 725–732 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Van de Peer, Y., Mizrachi, E. & Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Conant, G. C. & Wolfe, K. H. Turning a hobby into a job: How duplicated genes find new functions. Nat. Rev. Genet. 9, 938–950 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Z. et al. Patterns and Processes of Diploidization in Land Plants. Annu. Rev. Plant Biol. 72, 387–410 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wolfe, K. H. Yesterday’s polyploids and the mystery of diploidization. Nat. Rev. Genet. 2, 333–341 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Robertson, F. M. et al. Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification. Genome Biol. 18, 111 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Conant, G. C., Birchler, J. A. & Pires, J. C. Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. Curr. Opin. Plant Biol. 19, 91–98 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gundappa, M. K. et al. Genome-Wide Reconstruction of Rediploidization Following Autopolyploidization across One Hundred Million Years of Salmonid Evolution. Mol. Biol. Evol. 39, msab310 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martin, K. J. & Holland, P. W. H. Enigmatic orthology relationships between Hox clusters of the African butterfly fish and other teleosts following ancient whole-genome duplication. Mol. Biol. Evol. 31, 2592–2611 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    See also  Newcastle couple caught selling brownies laced with cannabis walk free from court

    Google Scholar 

  • Rozenfeld, C. et al. De novo European eel transcriptome provides insights into the evolutionary history of duplicated genes in teleost lineages. PLOS ONE 14, e0218085 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hughes, A. L. The evolution of functionally novel proteins after gene duplication. Proc. R. Soc. Lond. B Biol. Sci. 256, 119–124 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ohno, S. Evolution by gene duplication. (Springer-Verlag, 1970).

  • Scannell, D. R., Byrne, K. P., Gordon, J. L., Wong, S. & Wolfe, K. H. Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440, 341–345 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Clark, J. W. & Donoghue, P. C. J. Constraining the timing of whole genome duplication in plant evolutionary history. Proc. R. Soc. B Biol. Sci. 284, 20170912 (2017).

    Article 

    Google Scholar 

  • Chen, Y.-C. et al. The Litsea genome and the evolution of the laurel family. Nat. Commun. 11, 1675 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carretero‐Paulet, L. & Van de Peer, Y. The evolutionary conundrum of whole‐genome duplication. Am. J. Bot. 107, 1101–1105 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bi, X. et al. Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes. Cell 184, 1377–1391.e14 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thompson, A. W. et al. The bowfin genome illuminates the developmental evolution of ray-finned fishes. Nat. Genet. 53, 1373–1384 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dehal, P. & Boore, J. L. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 3, e314 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, P. et al. Draft Genome and Complete Hox-Cluster Characterization of the Sterlet (Acipenser ruthenus). Front. Genet. 10, 776 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Braasch, I. et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat. Genet. 48, 427–437 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fontana, F. Chromosomal Nucleolar Organizer Regions in 4 Sturgeon Species as Markers of Karyotype Evolution in Acipenseriformes (pisces). Genome 37, 888–892 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Havelka, M., Hulák, M., Bailie, D. A., Prodöhl, P. A. & Flajšhans, M. Extensive genome duplications in sturgeons: new evidence from microsatellite data. J. Appl. Ichthyol. 29, 704–708 (2013).

    Article 

    Google Scholar 

  • Ohno, S. et al. Microchromosomes in holocephalian, chondrostean and holostean fishes. Chromosoma 26, 35–40 (1969).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, H. et al. Extinction of one of the world’s largest freshwater fishes: Lessons for conserving the endangered Yangtze fauna. Sci. Total Environ. 710, 136242 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Crow, K. D., Smith, C. D., Cheng, J.-F., Wagner, G. P. & Amemiya, C. T. An independent genome duplication inferred from Hox paralogs in the American paddlefish-a representative basal ray-finned fish and important comparative reference. Genome Biol. Evol. 4, 937–953 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Symonová, R. et al. Molecular cytogenetic differentiation of paralogs of Hox paralogs in duplicated and re-diploidized genome of the North American paddlefish (Polyodon spathula). BMC Genet. 18, 19 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dingerkus, G. & Howell, W. M. Karyotypic Analysis and Evidence of Tetraploidy in the North American Paddlefish, Polyodon spathula. Science 194, 842–844 (1976).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shimodaira, H. An Approximately Unbiased Test of Phylogenetic Tree Selection. Syst. Biol. 51, 492–508 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Siu-Ting, K. et al. Inadvertent Paralog Inclusion Drives Artifactual Topologies and Timetree Estimates in Phylogenomics. Mol. Biol. Evol. 36, 1344–1356 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Philippe, H. et al. Mitigating Anticipated Effects of Systematic Errors Supports Sister-Group Relationship between Xenacoelomorpha and Ambulacraria. Curr. Biol. CB 29, 1818–1826.e6 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Steenwyk, J. L. et al. PhyKIT: a broadly applicable UNIX shell toolkit for processing and analyzing phylogenomic data. Bioinformatics 37, 2325–2331 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen, X.-X., Salichos, L. & Rokas, A. A Genome-Scale Investigation of How Sequence, Function, and Tree-Based Gene Properties Influence Phylogenetic Inference. Genome Biol. Evol. 8, 2565–2580 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Telford, M. J. et al. Phylogenomic analysis of echinoderm class relationships supports Asterozoa. Proc. R. Soc. B Biol. Sci. 281, 20140479 (2014).

    Article 

    Google Scholar 

  • Phillips, M. J. & Penny, D. The root of the mammalian tree inferred from whole mitochondrial genomes. Mol. Phylogenet. Evol. 28, 171–185 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

    See also  Maidstone Leisure Trust and Serco to take over Lockmeadow building David Lloyd leaves

  • Philippe, H. et al. Resolving Difficult Phylogenetic Questions: Why More Sequences Are Not Enough. PLOS Biol. 9, e1000602 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lartillot, N., Brinkmann, H. & Philippe, H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol. 7, S4 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Varadharajan, S. et al. The Grayling Genome Reveals Selection on Gene Expression Regulation after Whole-Genome Duplication. Genome Biol. Evol. 10, 2785–2800 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lahn, B. T. & Page, D. C. Four evolutionary strata on the human X chromosome. Science 286, 964–967 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zwaenepoel, A. & Van de Peer, Y. wgd—simple command line tools for the analysis of ancient whole-genome duplications. Bioinformatics 35, 2153–2155 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tiley, G. P., Barker, M. S. & Burleigh, J. G. Assessing the Performance of Ks Plots for Detecting Ancient Whole Genome Duplications. Genome Biol. Evol. 10, 2882–2898 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zwaenepoel, A., Li, Z., Lohaus, R. & Peer, Y. V. de. Finding Evidence for Whole Genome Duplications: A Reappraisal. Mol. Plant 12, 133–136 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Macqueen, D. J. & Johnston, I. A. A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc. Biol. Sci. 281, 20132881 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lartillot, N., Lepage, T. & Blanquart, S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thorne, J. L., Kishino, H. & Painter, I. S. Estimating the rate of evolution of the rate of molecular evolution. Mol. Biol. Evol. 15, 1647–1657 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lartillot, N. & Philippe, H. A Bayesian Mixture Model for Across-Site Heterogeneities in the Amino-Acid Replacement Process. Mol. Biol. Evol. 21, 1095–1109 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Giles, S., Xu, G.-H., Near, T. J. & Friedman, M. Early members of ‘living fossil’ lineage imply later origin of modern ray-finned fishes. Nature 549, 265–268 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Káldy, J. et al. Hybridization of Russian Sturgeon (Acipenser gueldenstaedtii, Brandt and Ratzeberg, 1833) and American Paddlefish (Polyodon spathula, Walbaum 1792) and Evaluation of Their Progeny. Genes 11, 753 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ocampo Daza, D., Bergqvist, C. A. & Larhammar, D. The Evolution of Oxytocin and Vasotocin Receptor Genes in Jawed Vertebrates: A Clear Case for Gene Duplications Through Ancestral Whole-Genome Duplications. Front. Endocrinol. 12, 792644 (2022).

    Article 

    Google Scholar 

  • Davesne, D. et al. Fossilized cell structures identify an ancient origin for the teleost whole-genome duplication. Proc. Natl Acad. Sci. 118, e2101780118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grande, L., Jin, F., Yabumoto, Y. & Bemis, W. E. Protopsephurus liui, a well-preserved primitive paddlefish (Acipenseriformes: Polyodontidae) from the Lower Cretaceous of China. J. Vertebr. Paleontol. 22, 209–237 (2002).

    Article 

    Google Scholar 

  • Swisher, C. C. et al. Further support for a Cretaceous age for the feathered-dinosaur beds of Liaoning,China:New 40Ar÷39Ar dating of the Yixian and Tuchengzi Formations. Chin. Sci. Bull. 47, 136–139 (2002).

    Google Scholar 

  • Benton, M. J. et al. Constraints on the timescale of animal evolutionary history. Palaeontol. Electron 18, 1–107 (2015).

    Google Scholar 

  • Fawcett, J. A., Maere, S. & Van de Peer, Y. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc. Natl Acad. Sci. USA 106, 5737–5742 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bemis, W. E., Findeis, E. K. & Grande, L. An overview of Acipenseriformes. Environ. Biol. Fishes 48, 25–71 (1997).

    Article 

    Google Scholar 

  • Hilton, E. J. & Forey, P. L. Redescription of †Chondrosteus acipenseroides Egerton, 1858 (Acipenseriformes, †Chondrosteidae) from the Lower Lias of Lyme Regis (Dorset, England), with comments on the early evolution of sturgeons and paddlefishes. J. Syst. Paleontol. 7, 427–453 (2009).

  • Lu, L., Tan, K. & Wang, X. Redescription of Eochondrosteus sinensis (Acipenseriformes, Actinopterygii) and its geological age. Earth Sci. Front. 27, 371–381 (2020).

    Google Scholar 

  • Bemis, W. E. & Kynard, B. Sturgeon rivers: an introduction to acipenseriform biogeography and life history. Environ. Biol. Fishes 48, 167–183 (1997).

  • Hibbins, M. S. & Hahn, M. W. Phylogenomic approaches to detecting and characterizing introgression. Genetics 220, iyab173 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Smith, J. J. et al. Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat. Genet. 45, 415–421 421e1-2 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, J. J. & Keinath, M. C. The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications. Genome Res. 25, 1081–1090 (2015).

    See also  Adrian Newey identifies potential ‘big risk’ on the horizon for F1

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuraku, S., Meyer, A. & Kuratani, S. Timing of Genome Duplications Relative to the Origin of the Vertebrates: Did Cyclostomes Diverge before or after? Mol. Biol. Evol. 26, 47–59 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Venkatesh, B. et al. Elephant shark genome provides unique insights into gnathostome evolution. Nature 505, 174–179 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, M. et al. The whale shark genome reveals patterns of vertebrate gene family evolution. eLife 10, e65394 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Irisarri, I. et al. Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nat. Ecol. Evol. 1, 1370–1378 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Minh, B. Q. et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. CABIOS 8, 275–282 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Mol. Biol. Evol. 33, 1635–1638 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilkinson, M., McInerney, J. O., Hirt, R. P., Foster, P. G. & Embley, T. M. Of clades and clans: terms for phylogenetic relationships in unrooted trees. Trends Ecol. Evol. 22, 114–115 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Page, R. D. & Charleston, M. A. From gene to organismal phylogeny: reconciled trees and the gene tree/species tree problem. Mol. Phylogenet. Evol. 7, 231–240 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).

  • Eddy, S. R. Accelerated Profile HMM Searches. PLOS Comput. Biol. 7, e1002195 (2011).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed Central 

    Google Scholar 

  • Le, S. Q., Lartillot, N. & Gascuel, O. Phylogenetic mixture models for proteins. Philos. Trans. R. Soc. B Biol. Sci. (2008) https://doi.org/10.1098/rstb.2008.0180.

  • Le, S. Q. & Gascuel, O. Accounting for Solvent Accessibility and Secondary Structure in Protein Phylogenetics Is Clearly Beneficial. Syst. Biol. 59, 277–287 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Si Quang, L., Gascuel, O. & Lartillot, N. Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics 24, 2317–2323 (2008).

    Article 

    Google Scholar 

  • Redmond, A. K. & McLysaght, A. Evidence for sponges as sister to all other animals from partitioned phylogenomics with mixture models and recoding. Nat. Commun. 12, 1783 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Redmond, A. K., Macqueen, D. J. & Dooley, H. Phylotranscriptomics suggests the jawed vertebrate ancestor could generate diverse helper and regulatory T cell subsets. BMC Evol. Biol. 18, 169 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics 34, 867–868 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Krzywinski, M. I. et al. Circos: An information aesthetic for comparative genomics. Genome Res. (2009) https://doi.org/10.1101/gr.092759.109.

  • Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Z. & Rannala, B. Bayesian Estimation of Species Divergence Times Under a Molecular Clock Using Multiple Fossil Calibrations with Soft Bounds. Mol. Biol. Evol. 23, 212–226 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Inoue, J., Donoghue, P. C. J. & Yang, Z. The Impact of the Representation of Fossil Calibrations on Bayesian Estimation of Species Divergence Times. Syst. Biol. 59, 74–89 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Frey, L. et al. The early elasmobranch Phoebodus: phylogenetic relationships, ecomorphology and a new time-scale for shark evolution. Proc. R. Soc. B Biol. Sci. 286, 20191336 (2019).

    Article 

    Google Scholar 

  • Redmond, A., Casey, D., Gundappa, M. K., Macqueen, D. J. & McLysaght, A. Sturgeon-Paddlefish Whole Genome Duplication Data. (2023)

    • May 20, 2023