close
close

Electrochemical grippers based on the tuning of surface forces for applications in micro- and nanorobotics

Electrochemical grippers based on the tuning of surface forces for applications in micro- and nanorobotics

  • Li, J. et al. Optical nanomanipulation on solid substrates via optothermally-gated photon nudging. Nat. Commun. 10, 5672 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Min, Y., Akbulut, M., Kristiansen, K., Golan, Y. & Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 7, 527–538 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xie, H., Onal, C., Régnier, S. & Sitti, M. Atomic Force Microscopy Based Nanorobotics (Springer, 2011).

    Google Scholar 

  • Mavroidis, C. & Ferreira, A. Nanorobotics: Current Approaches and Techniques (Springer, 2013).

    Book 

    Google Scholar 

  • Sitti, M. Mobile Microrobotics (MIT Press, 2017).

    Google Scholar 

  • Li, J., de Ávila, B.E.-F., Gao, W., Zhang, L. & Wang, J. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci. Robot. 2, 6431 (2017).

    Article 

    Google Scholar 

  • Sitti, M. Microscale and nanoscale robotic systems. IEEE Robot. Autom. Mag. 14, 53–60 (2007).

    Article 

    Google Scholar 

  • Kim, S., Ratchford, D. C. & Li, X. Atomic force microscope nanomanipulation with simultaneous visual guidance. ACS Nano 3, 2989–2994 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bøggild, P. et al. Microfabricated tools for pick-and-place of nanoscale components. IFAC Proc. Vol. 39, 120–126 (2006).

    Article 

    Google Scholar 

  • Mølhave, K., Wich, T., Kortschack, A. & Bøggild, P. Pick-and-place nanomanipulation using microfabricated grippers. Nanotechnology 17, 2434–2441 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Dejeu, J., Bechelany, M., Rougeot, P., Philippe, L. & Gauthier, M. Adhesion control for micro- and nanomanipulation. ACS Nano 5, 4648–4657 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zubir, M. N. M., Shirinzadeh, B. & Tian, Y. Development of a novel flexure-based microgripper for high precision micro-object manipulation. Sens. Actuator A Phys. 150, 257–266 (2009).

    Article 

    Google Scholar 

  • Huang, V. M. et al. Local electrochemical impedance spectroscopy: A review and some recent developments. Electrochim. Acta 56, 8048–8057 (2011).

    CAS 

    Google Scholar 

  • Shu, J. et al. A liquid metal artificial muscle. Adv. Mater. 33, 2103062 (2021).

    Article 
    CAS 

    Google Scholar 

  • Liao, J. & Majidi, C. Muscle-inspired linear actuators by electrochemical oxidation of liquid metal bridges. Adv. Sci. 9, 2201963 (2022).

    Article 
    CAS 

    Google Scholar 

  • Shi, C. et al. Recent advances in nanorobotic manipulation inside scanning electron microscopes. Microsyst. Nanoeng. 2, 16024 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dejeu, J. B., Philippe, L., Rougeot, P. & Michler, J. G. Reducing the adhesion between surfaces using surface structuring with PS latex particle. ACS Appl. Mater. Interfaces 2, 1630–1636 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gauthier, M., Régnier, S. & Rougeot, P. Analysis of forces for micromanipulations in dry and liquid media. J. Micromechatron. 3, 389–413 (2006).

    Article 

    Google Scholar 

  • Garza, H., Ghatkesar, M., Basak, S., Löthman, P. & Staufer, U. Nano-workbench: A combined hollow AFM cantilever and robotic manipulator. Micromachines 6, 600–610 (2015).

    Article 

    Google Scholar 

  • Yuan, S., Liu, L., Wang, Z. & Xi, N. AFM-Based Observation and Robotic Nano-Manipulation (Springer, 2020).

    Book 

    Google Scholar 

  • Meister, A. et al. FluidFM: Combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett. 9, 2501–2507 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Helfricht, N., Mark, A., Dorwling-Carter, L., Zambelli, T. & Papastavrou, G. Extending the limits of direct force measurements: colloidal probes from sub-micron particles. Nanoscale 9, 9491–9501 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mark, A., Helfricht, N., Rauh, A., Karg, M. & Papastavrou, G. The next generation of colloidal probes: A universal approach for soft and ultra-small particles. Small 15, 1902976 (2019).

    Article 
    CAS 

    Google Scholar 

  • Lhernould, M. S., Delchambre, A., Régnier, S. & Lambert, P. Electrostatic forces in micromanipulations: Review of analytical models and simulations including roughness. Appl. Surf. Sci. 253, 6203–6210 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, W. et al. Honeybee-inspired electrostatic microparticle manipulation system based on triboelectric nanogenerator. Nano Energy 104, 107901 (2022).

    See also  Community Calendar

    Article 
    CAS 

    Google Scholar 

  • Riccardi, M. & Martin, O. J. F. Electromagnetic forces and torques: From dielectrophoresis to optical tweezers. Chem. Rev. 123, 1680–1711 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, J. et al. Electrically programmable adhesive hydrogels for climbing robots. Sci. Robot. 6, 1858 (2021).

    Article 

    Google Scholar 

  • Li, D. et al. Study on the manipulation strategy of metallic microstructures based on electrochemical-assisted method. Micromachines (Basel) 13, 2151 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Kim, K. J. & Tadokoro, S. Electroactive Polymers for Robotic Applications (Springer, 2007).

    Book 

    Google Scholar 

  • Shi, Y.-X. et al. Soft electrochemical actuators with a two-dimensional conductive metal–organic framework nanowire array. J. Am. Chem. Soc. 143, 4017–4023 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Deng, Q. et al. Progress and prospective of electrochemical actuator materials. Compos. Part A Appl. Sci. Manuf. 165, 107336 (2023).

    Article 
    CAS 

    Google Scholar 

  • Otero, T. F., Martinez, J. G., Fuchiwaki, M. & Valero, L. Structural electrochemistry from freestanding polypyrrole films: Full hydrogen inhibition from aqueous solutions. Adv. Funct. Mater. 24, 1265–1274 (2014).

    Article 
    CAS 

    Google Scholar 

  • Israelachvili, J. N. Intermolecular and Surface Forces (American Press, 1992).

    Google Scholar 

  • Sinniah, S. K., Steel, A. B., Miller, C. J. & Reutt-Robey, J. E. Solvent exclusion and chemical contrast in scanning force microscopy. J. Am. Chem. Soc. 118, 8925–8931 (1996).

    Article 
    CAS 

    Google Scholar 

  • Noy, A., Vezenov, D. V. & Lieber, C. M. Chemical force microscopy. Annu. Rev. Mater. Sci. 27, 381–421 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Papastavrou, G. & Akari, S. Interaction forces between OH-groups in different solvents as observed by scanning force microscopy. Colloids Surf. A Physicochem. Eng. Asp. 164, 175–181 (2000).

    Article 
    CAS 

    Google Scholar 

  • Raduge, C., Papastavrou, G., Kurth, D. G. & Motschmann, H. Controlling wettability by light: Illuminating the molecular mechanism. Eur. Phys. J. E 10, 103–114 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, M. et al. Switchable photonic bio-adhesive materials. Adv. Mater. 33, 2103674 (2021).

    Article 
    CAS 

    Google Scholar 

  • Serafin, J. M., Hsieh, S.-J., Monahan, J. & Gewirth, A. A. Potential dependent adhesion forces on bare and underpotential deposition modified electrode surfaces. J. Phys. Chem. B 102, 10027–10033 (1998).

    Article 
    CAS 

    Google Scholar 

  • Campbell, S. D. & Hillier, A. C. Nanometer-scale probing of potential-dependent electrostatic forces, adhesion, and interfacial friction at the electrode/electrolyte interface. Langmuir 15, 891–899 (1999).

    Article 
    CAS 

    Google Scholar 

  • Kuznetsov, V. & Papastavrou, G. Adhesion of colloidal particles on modified electrodes. Langmuir 28, 16567–16579 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Papastavrou, G. Combining electrochemistry and direct force measurements: From the control of surface properties towards applications. Colloid Polym. Sci. 288, 1201–1214 (2010).

    Article 
    CAS 

    Google Scholar 

  • Butt, H. J. Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys. J. 60, 1438–1444 (1991).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ducker, W. A., Senden, T. J. & Pashley, R. M. Direct measurement of colloidal forces using an atomic force microscope. Nature 353, 239–241 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kappl, M. & Butt, H. J. The colloidal probe technique and its application to adhesion force measurements. Part. Part. Syst. Charact. 19, 129–143 (2002).

    Article 
    CAS 

    Google Scholar 

  • Yuan, C. C., Zhang, D. & Gan, Y. Invited review article: Tip modification methods for tip-enhanced Raman spectroscopy (TERS) and colloidal probe technique: A 10 year update (2006–2016) review. Rev. Sci. Instrum. 88, 031101 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Karg, A. et al. A versatile and simple approach to electrochemical colloidal probes for direct force measurements. Langmuir 37, 13537–13547 (2021).

    See also  Greenwich officials decry Railroad Avenue project's design

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mirkin, M. V. & Amemiya, S. Nanoelectrochemistry (CRC Press, 2015).

    Book 

    Google Scholar 

  • Petrovic, S. Cyclic voltammetry of hexachloroiridate(IV): An alternative to the electrochemical study of the ferricyanide ion. Chem. Educ. 5, 231–235 (2000).

    Article 
    CAS 

    Google Scholar 

  • Ji, X., Banks, C. E., Crossley, A. & Compton, R. G. Oxygenated edge plane sites slow the electron transfer of the ferro-/ferricyanide redox couple at graphite electrodes. ChemPhysChem 7, 1337–1344 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Butt, H.-J., Cappella, B. & Kappl, M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf. Sci. Rep. 59, 1–152 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Behrens, S. H. & Grier, D. G. The charge of glass and silica surfaces. J. Chem. Phys. 115, 6716–6721 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pericet-Camara, R., Papastavrou, G., Behrens, S. H. & Borkovec, M. Interaction between charged surfaces on the Poisson−Boltzmann level: The constant regulation approximation. J. Phys. Chem. B 108, 19467–19475 (2004).

    Article 
    CAS 

    Google Scholar 

  • Rentsch, S., Pericet-Camara, R., Papastavrou, G. & Borkovec, M. Probing the validity of the Derjaguin approximation for heterogeneous colloidal particles. Phys. Chem. Chem. Phys. 8, 2531–2538 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Trefalt, G., Palberg, T. & Borkovec, M. Forces between colloidal particles in aqueous solutions containing monovalent and multivalent ions. Curr. Opin. Colloid Interface Sci. 27, 9–17 (2017).

    Article 
    CAS 

    Google Scholar 

  • Kaftan, O. et al. Probing multivalent host–guest interactions between modified polymer layers by direct force measurement. J. Phys. Chem. B 115, 7726–7735 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zyulkov, I. et al. Area-selective ALD of Ru on nanometer-scale Cu lines through dimerization of amino-functionalized alkoxy silane passivation films. ACS Appl. Mater. Interfaces 12, 4678–4688 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • You, S. & Wan, M. P. Mathematical models for the van der Waals force and capillary force between a rough particle and surface. Langmuir 29, 9104–9117 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ramakrishna, S. N., Clasohm, L. Y., Rao, A. & Spencer, N. D. Controlling adhesion force by means of nanoscale surface roughness. Langmuir 27, 9972–9978 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stevens, F., Lo, Y.-S., Harris, J. M. & Beebe, T. P. Computer modeling of atomic force microscopy force measurements: Comparisons of Poisson, histogram, and continuum methods. Langmuir 15, 207–213 (1999).

    Article 
    CAS 

    Google Scholar 

  • Hillier, A. C., Kim, S. & Bard, A. J. Measurement of double-layer forces at the electrode/electrolyte interface using the atomic force microscope: Potential and anion dependent interactions. J. Phys. Chem. 100, 18808–18817 (1996).

    Article 
    CAS 

    Google Scholar 

  • Serafin, J. M. & Gewirth, A. A. Measurement of adhesion force to determine surface composition in an electrochemical environment. J. Phys. Chem. B 101, 10833–10838 (1997).

    Article 
    CAS 

    Google Scholar 

  • Rentsch, S., Siegenthaler, H. & Papastavrou, G. Diffuse layer properties of thiol-modified gold electrodes probed by direct force measurements. Langmuir 23, 9083–9091 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kuznetsov, V. & Papastavrou, G. Ion adsorption on modified electrodes as determined by direct force measurements under potentiostatic control. J. Phys. Chem. C 118, 2673–2685 (2014).

    Article 
    CAS 

    Google Scholar 

  • Borkowska, Z. & Hamelin, A. The influence of the crystallographic orientation on the double layer parameters of the Au/dimethylsulphoxide interface. J. Electroanal. Chem. 241, 373–377 (1988).

    Article 
    CAS 

    Google Scholar 

  • Trasatti, S. & Doubova, L. M. Crystal-face specificity of electrical double-layer parameters at metal/solution interfaces. J. Chem. Soc. Faraday Trans. 91, 3311–3325 (1995).

    Article 
    CAS 

    Google Scholar 

  • Ahrens, P. et al. Influence of argon ion beam etching and thermal treatment on polycrystalline and single crystal gold electrodes Au(100) and Au(111). J. Electroanal. Chem. 832, 233–240 (2019).

    See also  Inquest opened into A361 crash death of Banbury builder

    Article 
    CAS 

    Google Scholar 

  • Liang, J. et al. Electrostatic footpads enable agile insect-scale soft robots with trajectory control. Sci. Rob. 6, eabe7906 (2021).

    Article 
    ADS 

    Google Scholar 

  • Fischer, P. & Nelson, B. J. Tiny robots make big advances. Sci. Robot. 6, eabh3168 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Bard, A. J. & Faulkner, L. R. Fundamentals and Applications (Wiley, 2001).

    Google Scholar 

  • Xu, K. & Su, R. Path planning of nanorobot: A review. Microsyst. Technol. 28, 2393–2401 (2022).

    Article 

    Google Scholar 

  • Xu, K., Kalantari, A. & Qian, X. Efficient AFM-based nanoparticle manipulation via sequential parallel pushing. IEEE Trans. Nanotechnol. 11, 666–675 (2011).

    Article 
    ADS 

    Google Scholar 

  • Requicha, A. A. G., Arbuckle, D. J., Mokaberi, B. & Yun, J. Algorithms and software for nanomanipulation with atomic force microscopes. Int. J. Robot. Res. 28, 512–522 (2009).

    Article 

    Google Scholar 

  • Zhang, Z., Wang, X., Liu, J., Dai, C. & Sun, Y. Robotic micromanipulation: Fundamentals and applications. Annu. Rev. Control Robot. Auton. Syst. 2, 181–203 (2019).

    Article 

    Google Scholar 

  • Zimmermann, S., Tiemerding, T. & Fatikow, S. Automated robotic manipulation of individual colloidal particles using vision-based control. IEEE ASME Trans. Mechatron. 20, 2031–2038 (2015).

    Article 

    Google Scholar 

  • Dey, U., Kumar, C. S. & Jacob, C. SEM image-guided manipulation with a feedback assistance system for automated nanohandling of a 4 DOF micromanipulator. J. Micromech. Microeng. 31, 115006 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sha, X., Sun, H., Zhao, Y., Li, W. & Li, W. J. A review on microscopic visual servoing for micromanipulation systems: Applications in micromanufacturing, biological injection, and nanosensor assembly. Micromachines 10, 843 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, L., Li, X., Zhu, B. & Su, B. An overview of antifouling strategies for electrochemical analysis. Electroanalysis 34, 966–975 (2022).

    Article 
    CAS 

    Google Scholar 

  • Hanssen, B. L., Siraj, S. & Wong, D. K. Y. Recent strategies to minimise fouling in electrochemical detection systems. Rev. Anal. Chem. 35, 1–28 (2016).

    Article 
    CAS 

    Google Scholar 

  • Lin, P. H. & Li, B. R. Antifouling strategies in advanced electrochemical sensors and biosensors. Analyst 145, 1110–1120 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fischer, L. M. et al. Gold cleaning methods for electrochemical detection applications. Microelectron. Eng. 86, 1282–1285 (2009).

    Article 
    CAS 

    Google Scholar 

  • Fornof, A. R., Erdmann, M., David, R. & Gaub, H. E. Electric glue: Electrically controlled polymer-surface adhesion. Nano Lett. 11, 1993–1996 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fritz, P. A. et al. Electrode surface potential-driven protein adsorption and desorption through modulation of electrostatic, van der Waals, and hydration interactions. Langmuir 37, 6549–6555 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, J., Kwak, K. J., Lee, J. L. & Agarwal, G. Lifting and sorting of charged Au nanoparticles by electrostatic forces in atomic force microscopy. Small 6, 2105–2108 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng, H.-W. et al. Simple and fast method to fabricate single-nanoparticle-terminated atomic force microscope tips. J. Phys. Chem. C 117, 13239–13246 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Helfricht, N. et al. Probing the adhesion properties of alginate hydrogels: A new approach towards the preparation of soft colloidal probes for direct force measurements. Soft Matter 13, 578–589 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hutter, J. L. & Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar 

    • May 16, 2023